Helmholtz Trap
A classic never-to-be-forgotten sound trap is the Helmholtz trap, which carries the name of a great, old-time German acoustical scientist. Conceptually, the Helmholtz is little more than a jug, tuned with loose batt stuffed inside. However, it usually looks like a panel of ¼ in. pegboard behind which is a 1-3 in. air space fluffed with light building insulation.
The absorption curve illustrates the strong frequency selective property of this type of absorber. Two difficulties exist with using such a trap: It is a single-frequency type, and must be tuned to a known room mode, and The trap’s performance is strongly dependent on the amount of batting placed in the cavity and the rigidity of its wall, especially the perf panel. It is difficult to tune.
Functional Traps
In the early 1950s, Dr. Harry Olsen, director of RCA Labs and a prolific masterful contributor to audio practice and theory, presented his “functional sound absorber.” It was especially unique because of its unprecedented one hundred and sixty percent efficient handling of low frequency sound. He envisioned its use overhead in large rooms and halls. But elsewhere in his literature he advises that low-frequency sound absorbers are best located in the corners of smaller rooms.

The “functional sound absorber” is a close cousin to the flat pressure zone trap. The density of the fiberglass for this type system is impedance matched to the radiation impedance of free sound waves in air. Essentially, if the fiberglass is too dense, sound bounces off; if it is too loose, sound goes right through. The resistance of the surface combines with the volume of the airspace inside to provide a very low frequency response curve for the trap, similar to an electronic RC circuit. By adjusting the value of R and C, the desired RC time constant can be picked for the trap’s roll-off characteristic.
Sound absorption is always a function of two factors: the surface of acoustic material exposed to the sound field and the efficiency frequency response of the surface. Dr. Olsen’s cylinder bass trap has just over three times the apparent frontal surface area. Secondly, it is very efficient into the lower frequencies because it is an acoustic circuit of RC time constant design, rather than the more traditional ¼ wavelength “fuzz ball” approach to acoustics.

As with all traps, midrange and high frequency partial reflectivity remains of value. Accordingly, today’s pro style functional-type bass trap is usually outfitted with a membrane section to back scatter mid-range frequencies (usually above 400 Hz). These traps are extremely efficient, and particularly when located in the corners of a room. To increase absorption in a selected frequency band or to extend the low frequency response curve, the interior volume can be fitted with a low Q Helmholtz resonator. It is particularly suited as a corner-loaded bass trap in small audio rooms because it is small, efficient, modular and easy to set up, more like studio equipment than a remodel construction project.
Rectangular Room Disease: Head Ringing
Home/project studios in rectangular rooms suffer from a malady that most designer studios do not have–head-end ringing. Speakers are usually located near the front of the room. From this location they easily stimulate room resonances along the length of the room. It takes about ten exchanges of sound between the front and back of the room to build up the condition of resonance, typically ¼ second.

Speakers may be far from the back wall, but they are very close to the side walls and floor/ceiling walls in the front of the room. Because of these short lateral dimensions, side to side and vertical resonances can build very quickly (within 1/20 second in the front end of the room), long before the entire room Can be engulfed in the resonance. This fleeting, quick resonance is called “head-end ringing” and because of the time scale, dramatically affects imaging and the color of attack transients.
Head end ringing is not a deep bass problem–it is a mid bass coloration effect due to a lack of bass traps in the front end of the room. Designer studios with the Reflection Free Zone (RFZ) cup shaped front end don’t have this problem. The raked walls and ceiling eliminate any opportunity for reflections to stay and build up in the front of the room. But with home and project studios set up in rectangular rooms, head end ringing is a major problem that near-field or mid-field monitors cannot even avoid. Typically, playback monitors are located about halfway between floor and ceiling, and about one-third in from the side walls. The classic head end ringing problem occurs at about 140 Hz. A substantial distribution of mid-bass traps on the walls and in corners of the front end of the audio room is the only way to control head end ringing.
|